Diffraction-free pulsed optical beams via space-time correlations.
نویسندگان
چکیده
Diffraction places a fundamental limitation on the distance an optical beam propagates before its size increases and spatial details blur. We show here that imposing a judicious correlation between spatial and spectral degrees of freedom of a pulsed beam can render its transverse spatial profile independent of location along the propagation axis, thereby arresting the spread of the time-averaged beam. Such correlation introduced into a beam with arbitrary spatial profile enables spatio-temporal dispersion to compensate for purely spatial dispersion that underlies diffraction. As a result, the spatio-temporal profile in the local time-frame of the pulsed beam remains invariant at all positions along the propagation axis. One-dimensional diffraction-free space-time beams are described - including non-accelerating Airy beams, despite the well-known fact that cosine waves and accelerating Airy beams are the only one-dimensional diffraction-free solutions to the monochromatic Helmholtz equation.
منابع مشابه
Discrete-like diffraction dynamics in free space.
We introduce a new class of paraxial optical beams exhibiting discrete-like diffraction patterns reminiscent to those observed in periodic evanescently coupled waveguide lattices. It is demonstrated that such paraxial beams are analytically described in terms of generalized Bessel functions. Such effects are elucidated via pertinent examples.
متن کاملFree-space delay lines and resonances with ultraslow pulsed Bessel beams.
We investigate the ultraslow motion of polychromatic Bessel beams in unbounded, nondispersive media. Control over the group velocity is exercised by means of the angular dispersion of pulsed Bessel beams of invariant transverse spatial frequency, which spontaneously emerge from near-field generators. Temporal dynamics in transients and resonances over homogeneous delay lines (dielectric slabs) ...
متن کاملDiffraction-free and dispersion-free pulsed beam propagation in dispersive media.
The diffraction of pulsed beams of light is formulated as an anomalously dispersive phenomenon. In a dispersive material, the effects of material group-velocity dispersion and diffraction on pulsed beam propagation can mutually cancel if the transverse profile of the pulse is suitably chosen.
متن کاملDark and antidark diffraction-free beams.
We present dark and antidark diffraction-free beams and discuss their properties. We show that all such beams must be partially spatially coherent. The new beams can be used for optical trapping of atoms.
متن کاملLong-distance Bessel beam propagation through Kolmogorov turbulence.
Free-space optical communication has the potential to transmit information with both high speed and security. However, since it is unguided it suffers from losses due to atmospheric turbulence and diffraction. To overcome the diffraction limits the long-distance propagation of Bessel beams is considered and compared against Gaussian beam properties. Bessel beams are shown to have a number of be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 24 25 شماره
صفحات -
تاریخ انتشار 2016